

A new research paper titled “Resistance of MMTV-NeuT/ATTAC mice to anti-PD-1 immune checkpoint therapy is associated with macrophage infiltration and Wnt pathway expression” has been published in Oncotarget.
One of the central challenges for cancer therapy is the identification of factors in the tumor microenvironment that increase tumor progression and immune tolerance. In breast cancer, fibrosis is a histopathologic criterion for invasive cancer and poor survival that results from inflammatory factors and remodeling of the extracellular matrix to produce an immune-tolerant microenvironment.
In this new study, researchers from Georgetown University Medical Center, Merck Research Institute, and Bicycle Therapeutics aimed to determine whether tolerance is associated with the immune checkpoint, Programmed Cell Death 1 (PD-1). A conditional model of mammary fibrosis recently developed by this team, NeuT/ATTAC mice, were administered a murine-specific anti-PD-1 mAb related to pembrolizumab. The researchers monitored drug response by tumor development, imaging mass cytometry, immunohistochemistry, and tumor gene expression by RNAseq.
“Utilizing this more stringent tumor model to test its susceptibility to anti-PD-1 immunotherapy, we report the signaling processes associated with its lack of responsiveness,” the researchers write.
Tumor progression in NeuT/ATTAC mice was unaffected by weekly injections of anti-PD-1 over four months. Insensitivity to anti-PD-1 was associated with several processes, including increased tumor-associated macrophages (TAM), epithelial to mesenchymal transition (EMT), fibroblast proliferation, an enhanced extracellular matrix, and the Wnt signaling pathway, including increased expression of Fzd5, Wnt5a, Vimentin, Mmp3, Col2a1, and Tgfβ1. These results suggest potential therapeutic avenues that may enhance PD-1 immune checkpoint sensitivity, including the use of tumor microenvironment targeted agents and Wnt pathway inhibitors.
“Overall, the immune tolerant TME in NeuT/ATTAC mice was associated with tumor-infiltrating macrophages, Foxp3+/PD-1- Treg cells as well as upregulation of the Wnt signaling pathway, which may provide further insights into the therapeutic options that may enhance immune checkpoint therapy,” the researchers conclude.
more recommended stories
Personalized brain modeling technique may lead to breakthroughs in clinical epilepsy trial
Researchers of the Human Brain Project.
Investigative reporter, who covered murder-suicides, explains how journalists are vulnerable to trauma
It never really dawned on me.
Got gastroenteritis? Here’s why eating bananas helps but drinking flat lemonade might not
Doctors are reportedly concerned about a spike in.
Immunotherapy combined with targeted therapy for colorectal cancer yields promising outcomes for patients
A new study that used insights.
How total abortion ban puts maternal health at risk
Pregnant patients in El Salvador, who,.
Scientists find that microRNA affects inflammation in lupus disease.
A group of researchers from the.
Researchers unveil new collection of human brain atlases that chart postnatal development
Human brain atlases can be used.
New hope for patients with hereditary metabolic disorder
Methylmalonic aciduria (MMA) is a metabolic.
Keys to making immunotherapy work against pancreatic cancer found in tumor microenvironment
A new study that analyzed the.
Study shows correlation between poor sleep and suicide risk in college-aged adults
A study led by researchers in.
Leave a Comment