Flinders University medical specialists developed a low-cost solution to adapt N95 filtering facepiece respirators (FFRs) for health workers on the front lines of the pandemic and respiratory viruses such as influenza. “Individually and anatomically personalized 3D-printed face mask represent a rapidly scalable technology to significantly improve health care worker protection and comfort, and fit-testing pass rates,” says Flinders University cardiology research fellow Darius Chapman.
According to the researchers, the reduction in “leakage” and increased comfort for the wearer whose face has been specifically fitted could have applications to enhancing respirator and face mask safety in a variety of industrial contexts, including health care and beyond. The paper “Personalized 3D-printed frames to reduce leak from N95 filtering facepiece respirators: a prospective crossover trial in health care workers” was published in the Journal of Occupational and Environmental Hygiene.
During the COVID-19 pandemic, Mr. Chapman led a project with clinician and cardiac electrophysiology scientist at Flinders, Professor Anand Ganesan, to compare the performance of personalized 3D printed frames to improve N95 FFRs test scores compared to regular respirators.
They created 3D scans of volunteers’ faces using a mobile iPhone camera and an app, which were then loaded into a software program to define each user’s facial structure and characteristics to scale.
From these individual facial impressions, or virtual scaffolds, a plastic and subsequently silicone-coated frame was created using a commercially available 3D printer.
“Overall, the quantitative fit testing significantly improved, as did the respirator comfort and tolerability factor,” says Mr. Chapman.
“With further refinement, this system could considerably advance the correct fitting of N95 and other FFRs, which have become increasingly important in our health care systems during the pandemic,” adds Professor Ganesan.
“The ability to generate the low-cost 3D-printed mesh from a readily available mobile device technology means that individual face scans can be easily and cost-effectively generated around the world in any location.
“A proposed workflow for this technology could involve the scans being sent direct to fabrication centers which could be located at a distance from hospitals or other health facilities.
“Further, using readily available consumer-grade 3D printers and materials at low cost could be an important practical advance to decreasing leakage from N95 FFRs in workers as well as other people at high risk of severe outcomes from respiratory virus, like immunocompromised people.”
more recommended stories
-
Atom Probe Study Reveals Fluoride Patterns in Aging Teeth
Teeth are necessary for breaking down.
-
Annona Squamosa: Natural Remedy for Pain & Arthritis
In Brazil, researchers discovered compounds having.
-
SBRT and Sorafenib: A New Hope for Liver Cancer Patients
Recent findings from the Phase III.
-
Surgeons Slow to Adopt Biomaterials for Bone Defects
Two million bone transplants are performed.
-
Silver Showerheads May Promote Biofilms & Resistance
To protect against hazardous waterborne germs,.
-
Gaps in Gestational Diabetes Diagnosis in Pregnant Women
According to research on gestational diabetes.
-
First-of-Its-Kind Gene-Edited Pig Kidney: Towana’s New Life
Surgeons at NYU Langone Health have.
-
AI Advancing Mammography Density prediction
In a new article published in.
-
Gut Microbiome Predicts Long COVID Risk
In a recent pre-print study published.
-
The Buzz About Coffee and Better Cardiovascular Health
A recent review published in Nutrients.
Leave a Comment