

AI (artificial intelligence) may appear to be a chilly robotic system, but Osaka Metropolitan University researchers have demonstrated that it may provide heartwarming—or, more specifically, “heart-warning”—support. They demonstrated a new use of artificial intelligence (AI) that classifies cardiac functions and pinpoints valvular heart disease with unparalleled precision, suggesting continuous progress in bridging the worlds of medicine and technology to improve patient treatment. The findings will appear in The Lancet Digital Health.
Echocardiography is frequently used to diagnose valvular heart disease, one of the leading causes of heart failure. However, because this approach demands specialized abilities, there is a corresponding shortage of skilled technicians. Meanwhile, chest radiography is one of the most commonly used techniques to diagnose disorders, particularly those of the lungs. Despite the fact that the heart can be seen in chest radiographs, nothing is known about the ability of chest radiographs to identify cardiac function or illness.
Chest radiographs, often known as chest X-rays, are conducted in many hospitals and take extremely little time to complete, making them very accessible and reproducible. As a result, the research team led by Dr. Daiju Ueda from the Department of Diagnostic and Interventional Radiology at Osaka Metropolitan University’s Graduate School of Medicine concluded that if cardiac function and disease could be determined from chest radiographs, this test could serve as a supplement to echocardiography.
Dr. Ueda’s team has created a model that uses artificial intelligence to effectively classify cardiac functions and valvular heart disorders from chest radiographs. Because AI trained on a single dataset may be biased, resulting in low accuracy, the researchers sought multi-institutional data.
As a result, between 2013 and 2021, a total of 22,551 chest radiographs and 22,551 echocardiograms were gathered from 16,946 individuals at four facilities. The AI model was trained to learn features connecting both datasets using chest radiographs as input data and echocardiograms as output data.
The AI model accurately classified six forms of valvular heart disease, with the Area Under the Curve, or AUC, ranging from 0.83 to 0.92. (AUC is a rating measure that reflects an AI model’s capability and uses a value range of 0 to 1, with the closer to 1, the better.) The AUC for detecting left ventricular ejection fraction—an important parameter for monitoring cardiac function—was 0.92 at a 40% cut-off.
“It took us a very long time to get to these results, but I believe this is significant research,” stated Dr. Ueda. “In addition to improving the efficiency of doctors’ diagnoses, the system might also be used in areas where there are no specialists, in night-time emergencies, and for patients who have difficulty undergoing echocardiography.”
more recommended stories
lncRNAs in Tumor Microenvironment Drive Cancer Progression
The tumor microenvironment (TME) is a.
Lyme Disease Symptoms: Why They Linger After Treatment
Lyme disease symptoms that persist after.
Body Image in Young Women: Cultural Influences Matter
A new international study led by.
Early Alzheimer’s Found Through Blood Biomarkers
A new study published in Molecular.
Label-Free Motion Analysis Detects Cancer Cells
Label-free motion analysis is emerging as.
Harmful Chemicals in Children’s Mattresses
A recent study has brought to.
TMS for Post-Stroke Aphasia Shows Remarkable Gains
A new clinical study led by.
CT Scan Overuse May Cause 1 in 20 New U.S. Cancers
A recent study published in JAMA.
Lactation Metabolism: Brain-Hormone Link Uncovered
Understanding how the body adjusts to.
Osteoarthritis Genetics Study Uncovers New Treatment Hope
Osteoarthritis- the world’s leading cause of.
Leave a Comment