![blurry vision](https://emed.news/wp-content/uploads/2025/02/Brains-High-Tech-Fix-for-Blurry-Vision-During-Movement.png)
![blurry vision](https://emed.news/wp-content/uploads/2025/02/Brains-High-Tech-Fix-for-Blurry-Vision-During-Movement.png)
High-Tech Video Optimization in Our Brain: How the Brain Unblurs Vision During Movement
Researchers at the Institute of Science and Technology Austria (ISTA), led by Professor Maximilian Jösch, have discovered how the brain corrects visual distortions caused by movement. This groundbreaking study, published in Nature Neuroscience, reveals that a specific brain region, the ventral lateral geniculate nucleus (vLGN), plays a crucial role in stabilizing vision during motion in animals and likely humans.
The team found that the vLGN, located in the lateral thalamus, integrates motor and sensory signals from across the brain to predict and minimize movement-induced visual distortions. This process, which happens early in visual processing, ensures that images stay sharp even during rapid movement, before the information is passed on to other brain areas responsible for complex visual interpretation.
The discovery came through a combination of advanced techniques, including a custom-built two-photon microscope that allowed the scientists to observe the brains of awake, behaving mice in a virtual reality setup. The researchers observed that the vLGN receives copies of motor commands, which it uses to “unblur” visual signals as the eyes move. This mechanism is akin to how a Formula 1 race car driver’s eye adapts to fast movement, preventing blurriness in the footage, and works similarly to onboard camera stabilization.
Unlike previous studies that focused on later stages of visual processing, this research highlights the importance of compensating for movement early on. It suggests that this core function in the vLGN may be fundamental across the mammalian brain, offering insights that could apply to humans as well.
The team’s use of cutting-edge technologies, including virtual reality and calcium imaging, provided a detailed look at how the brain stabilizes vision during action. This study not only reveals how the brain’s visual system compensates for motion but also opens doors for future research into how these mechanisms function in primates and humans.
More Information: A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics, Nature Neuroscience (2025). DOI: 10.1038/s41593-025-01874-w
more recommended stories
Early Alzheimer’s Diagnosis with Advanced Tau Test
A New Biomarker Test Promises Early.
Air Pollution Hurts Brain Health in Just 4 Hours
Air Pollution Blurs the Mind, Impairs.
Brain Aging in Latin America Tied to Social, Health Gaps
Social and Health Disparities Drive Brain.
New therapies developed by Oxford experts offer online support for anxiety and post-traumatic stress disorders
Urgent treatment solutions are needed for.
three key pillars to tackle antimicrobial resistance effectively — University of Oxford, Medical Sciences Division
The High-Level Meeting on antimicrobial resistance.
Oxford Vaccine Group marks 30 years battling ‘deadly six’ diseases with major art installation — University of Oxford, Medical Sciences Division
The installation was commissioned to mark.
Professor Ahmed Awarded Funding To Create World’s First Ovarian Cancer Prevention Vaccine — University of Oxford, Medical Sciences Division
Scientists at the University of Oxford,.
New research network unites Oxford University’s global fight against antimicrobial resistance — University of Oxford, Medical Sciences Division
Antimicrobial resistance (AMR) threatens the foundation.
Typhoid vaccine trial confirms sustained protection for older children — University of Oxford, Medical Sciences Division
The TyVOID study, published in the Lancet, measured the.
Study Publishes New Insights on Goblet Cell Differentiation in Colorectal Cancer — University of Oxford, Medical Sciences Division
The research addresses the long-recognized poor.
Leave a Comment