

Recent research from Brigham and Women’s Hospital has unveiled how intestinal infections can significantly alter bile composition, influencing gut immunity and microbiota. Published in *Nature Microbiology* (2024), the study underscores bile’s dynamic role in host defense, adding a new dimension to our understanding of liver and intestinal interplay during infections.
Bile, a liver-produced solution essential for fat digestion, also serves as a communication medium between the liver and gut. Traditionally studied for its role in nutrient absorption, bile’s composition and its functional changes during infections have been less explored. This study sheds light on how enteric infections—broadly referring to infections affecting the intestine—induce specific changes in bile, aiding the gut in clearing pathogens.
Using a mouse model, the researchers analyzed bile metabolite alterations during infections with two pathogens: *Listeria monocytogenes*, which spreads to the intestine, liver, and gallbladder, and *Citrobacter rodentium*, which primarily infects the cecum and colon. Advanced metabolic profiling revealed hundreds of bile metabolites, including novel ones, that shifted dynamically in response to infection. These changes were both pathogen-specific and shared, highlighting bile’s role as a critical component of intestinal defense mechanisms.
Dr. Matthew Waldor, MD, PhD, from the hospital’s Division of Infectious Diseases, commented:
Our findings reveal the intricate and adaptive nature of bile composition, emphasizing the liver’s essential role in defending the gut. This opens new avenues for understanding how the liver regulates immune responses and maintains physiological stability during infections.
The study also identified 812 bile metabolites, though researchers believe this is just the beginning. With advances in tandem mass spectrometry, the discovery of additional metabolites and their specific roles in immune function is anticipated.
These findings enhance our knowledge of the liver-gut axis and its impact on infection clearance. While conducted in mice, the results hold promise for translating to human health, offering potential insights into therapeutic strategies for managing intestinal infections and related disorders.
This research not only broadens the understanding of bile’s metabolic complexity but also highlights its critical involvement in immune modulation, paving the way for future studies on liver and gut health in the context of infectious diseases.
More information: Ting Zhang et al, Enteric bacterial infection stimulates remodelling of bile metabolites to promote intestinal homeostasis, Nature Microbiology (2024). DOI: 10.1038/s41564-024-01862-z
more recommended stories
Statins and Depression: No Added Benefit
What Are Statins Used For? Statins.
Azithromycin Resistance Rises After Mass Treatment
Mass drug administration (MDA) of azithromycin.
Generative AI in Health Campaigns: A Game-Changer
Mass media campaigns have long been.
Molecular Stress in Aging Neurons Explained
As the population ages, scientists are.
Higher BMI and Hypothyroidism Risk Study
A major longitudinal study from Canada.
Therapeutic Plasma Exchange Reduces Biological Age
Therapeutic plasma exchange (TPE), especially when.
Childhood Cancer Diagnosis Delays Persist
Delays in childhood cancer diagnosis remain.
Hypothalamic Changes in Eating Disorders Explained
Groundbreaking MRI scans reveal microstructural hypothalamic.
Rapid Blood Test for Rare Diseases Revolutionizes Pediatric Diagnosis
A groundbreaking blood test developed by.
Blood Markers for Teen Depression: A Breakthrough in Early Detection
Mental health professionals and researchers have.
Leave a Comment