Antimicrobial resistance (AMR) threatens the foundation of modern medicine and is described by the World Health Organization as one of the top global public health and development threats. It occurs when bacteria and other disease-causing microbes gain the ability to resist the action of treatments designed to kill them.
AMR has led to at least one million deaths each year since 1990 and is expected to cause another 39 million deaths between now and 2050. AMR is directly related to 16 of the 17 UN Sustainable Development Goals, with severe negative implications for poverty, gender inequality, animal welfare, the environment, and food security.
In response to this far-reaching threat, the newly established Oxford AMR Network harnesses the University of Oxford’s considerable expertise in life sciences, medical and social sciences, and humanities to tackle this challenge through multiple approaches.
There are over 200 researchers working to tackle AMR across Oxford. Their work spans new drug discovery and antibiotic stewardship, to development of diagnostic tools and AMR surveillance and epidemiology.
Funded and hosted by the Ineos Oxford Institute for antimicrobial research (IOI), the network will mobilise Oxford University’s expertise in AMR to facilitate new collaborations and generate novel research to find solutions. A new database will list researchers across the university whose wide-ranging expertise exemplifies the vast array of world-leading research from Oxford teams, including overseas units in the MORU Tropical Health Network and the Oxford University Clinical Research Unit OUCRU).
more recommended stories
Sickle Cell Gene Therapy Access Expands GloballyKey Summary Caring Cross and Boston.
Reducing Alcohol Consumption Could Lower Cancer DeathsKey Takeaways (At a Glance) Long-term.
NeuroBridge AI Tool for Autism Communication TrainingKey Takeaways Tufts researchers developed NeuroBridge,.
Population Genomic Screening for Early Disease RiskKey Takeaways at a Glance Population.
Type 2 Diabetes Risk Identified by Blood MetabolitesKey Takeaways (Quick Summary) Researchers identified.
Microglia Neuroinflammation in Binge DrinkingKey Takeaways (Quick Summary for HCPs).
Precision Oncology with Personalized Cancer Drug TherapyKey Takeaways UC San Diego’s I-PREDICT.
Iron Deficiency vs Iron Overload in Parkinson’s DiseaseKey Takeaways (Quick Summary for HCPs).
Can Ketogenic Diets Help PCOS? Meta-Analysis InsightsKey Takeaways (Quick Summary) A Clinical.
Silica Nanomatrix Boosts Dendritic Cell Cancer TherapyKey Points Summary Researchers developed a.

Leave a Comment