

A groundbreaking project from the University of South Australia (UniSA) is set to transform how gastrointestinal (GI) cancers are detected and treated. Backed by a $405,050 AEA Ignite Grant, researchers are developing a quantum technology-based laparoscopic probe that enables surgeons to more precisely locate cancerous lymph nodes—minimizing tissue removal and improving recovery.
Quantum Technology in Cancer Surgery: How It Works
The probe integrates state-of-the-art quantum sensors with Ferronova’s iron-oxide nanoparticle formulation (FerroTrace) to detect cancer spread more accurately. Unlike traditional surgical methods that often involve removing large sections of tissue—leading to complications and long-term side effects—this innovation supports safer, minimally invasive procedures.
“By embedding quantum sensors into a laparoscopic probe, we aim to make surgeries more targeted and less traumatic for patients,” says Dr. Nicole Dmochowska, lead researcher at UniSA’s Future Industries Institute.
Clinical Promise and Market Potential in Cancer Surgery
The research team has already proven the feasibility of quantum sensor magnetometer probes in a successful oral cancer clinical trial. This next phase focuses on miniaturizing the technology for laparoscopic surgeries.
With GI cancers among the deadliest globally, and the global market for precision cancer tools projected to surpass $2 billion annually, the commercial and clinical potential is enormous.
Quantum Technology in Cancer Surgery: A Safer, Smarter Approach
Unlike current lymph node mapping methods that rely on radioactive tracers, the quantum probe and FerroTrace offer a safer alternative, especially for patients undergoing chemo or radiation before surgery.
“This could be a paradigm shift in cancer treatment,” says Dr. Aidan Cousins, senior researcher at Ferronova. “It’s about giving patients better outcomes and a better quality of life.”
Preclinical Trials for Quantum Cancer Surgery Technology
The next step: develop a fully functional, validated prototype for large animal trials, a key milestone before human clinical trials. This project aligns with Australia’s national priorities in both medical innovation and quantum technology, and could shape the future of cancer surgery worldwide.
For more information: University of South Australia
more recommended stories
Prenatal Chlorpyrifos Exposure and Pediatric Brain Changes
A Growing Concern in Pediatric Neurodevelopment.
Valve Deterioration After TAVI: New Research Insights
The Growing Role of TAVI in.
FAST Walking Shows Promise in Post-Stroke Rehab
Stroke remains one of the leading.
Legionnaires’ Disease Long-Term Effects on Patient Recovery
Persistent Symptoms and Post-Acute Infection Syndromes.
Brisk Walking: A 15-Minute Daily Habit That Reduces Mortality in Underserved Populations
A powerful yet simple intervention A.
Vaping and Teen Smoking: UK Study Warns of Rising Risks
A new study published in Tobacco.
Targeting Cancer Cell Memory Boosts Chemotherapy
Researchers double chemotherapy effectiveness through chromatin.
PFAS Exposure Linked to Increased Type 2 Diabetes Risk
Investigating the Metabolic Impact of Forever.
Gecko-Inspired Nanoparticles Offer New Direction in Localized Cancer Therapy
Nature-Inspired Nanoparticles Deliver Precision Chemotherapy Researchers.
Staphylococcus Shows Complex Enzyme Redundancy, Study Finds
A Bacterial Pathogen That Refuses to.
Leave a Comment