

A collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center, and the University of Virginia published their findings in JAMA Network Open. They investigated how well doctors used GPT-4, an artificial intelligence (AI) large language model system, for patient diagnosis.
GPT- 4 Study
The study included 50 U.S.-licensed family, internal, and emergency medicine physicians. The research team discovered that providing GPT-4 to physicians as a diagnostic assistance did not significantly improve clinical reasoning when compared to conventional resources. Other major discoveries are:
- GPT-4 alone produced much higher diagnostic performance scores, outperforming physicians utilizing traditional diagnostic web tools and clinicians supported by GPT-4.
- When comparing doctors who used GPT-4 to those who used standard diagnostic resources, there was no significant improvement in diagnostic performance.
“The field of AI is expanding rapidly and impacting our lives inside and outside of medicine. It is important that we study these tools and understand how we best use them to improve the care we provide as well as the experience of providing it,” said Andrew Olson, MD, a professor at the U of M Medical School and hospitalist with M Health Fairview.
This study suggests that there are opportunities for further improvement in physician-AI collaboration in clinical practice.”
Andrew Olson, MD, Professor, University of Minnesota Medical School
These findings highlight the complexities of integrating AI into clinical practice. While GPT-4 alone produced promising outcomes, combining GPT-4 with physicians did not significantly exceed the utilization of traditional diagnostic resources. This implies a nuanced potential for AI in healthcare, underlining the need for additional research on how AI might effectively help clinical practice. Further research is needed to determine how clinicians should be trained to use these tools.
For more information: Goh, E., et al. (2024) Large Language Model Influence on Diagnostic Reasoning. JAMA Network Open. doi.org/10.1001/jamanetworkopen.2024.40969.
more recommended stories
Statins and Depression: No Added Benefit
What Are Statins Used For? Statins.
Azithromycin Resistance Rises After Mass Treatment
Mass drug administration (MDA) of azithromycin.
Generative AI in Health Campaigns: A Game-Changer
Mass media campaigns have long been.
Molecular Stress in Aging Neurons Explained
As the population ages, scientists are.
Higher BMI and Hypothyroidism Risk Study
A major longitudinal study from Canada.
Therapeutic Plasma Exchange Reduces Biological Age
Therapeutic plasma exchange (TPE), especially when.
Childhood Cancer Diagnosis Delays Persist
Delays in childhood cancer diagnosis remain.
Hypothalamic Changes in Eating Disorders Explained
Groundbreaking MRI scans reveal microstructural hypothalamic.
Rapid Blood Test for Rare Diseases Revolutionizes Pediatric Diagnosis
A groundbreaking blood test developed by.
Blood Markers for Teen Depression: A Breakthrough in Early Detection
Mental health professionals and researchers have.
Leave a Comment