

What form of brain tumor is this patient suffering from? AI technologies can assist determine this as early as 1.5 hours into operation. Normally, this process would take a week. Neurosurgeons can now alter their surgical methods on the fly thanks to new technology. A study on this topic was released today by researchers from UMC Utrecht, as well as researchers, pathologists, and neurosurgeons from the Princess Máxima Center for Pediatric Oncology and Amsterdam UMC.
In the Netherlands, 1,400 adults and 150 children are diagnosed with a brain or spinal cord tumor per year. Surgery is frequently the initial step in treatment. Neurosurgeons currently do not know what form of brain tumor they are dealing with or how aggressive it is throughout operation. The exact diagnosis is usually only available one week following surgery, after the pathologist has visually and molecularly evaluated the tumor tissue.
Deep-learning algorithm
UMC Utrecht researchers have created a new “deep-learning algorithm,” a type of artificial intelligence that considerably speeds up diagnostics.
Jeroen de Ridder, research group leader within UMC Utrecht and Oncode Institute, explains, “Recently, Nanopore sequencing became available: a technology that helps to read DNA in real time. For this, we developed an algorithm that is equipped to learn from millions of simulated realistic ‘DNA snapshots.’ With this algorithm, we can identify the tumor type within 20 to 40 minutes. And that is fast enough to directly adjust the surgical strategy, if necessary.”
De Ridder supervises a bioinformatics lab comprising 15 computational scientists. His team analyzes large chemical datasets using the most recent advances in computer science, such as machine learning and artificial intelligence (AI). This information is derived, for example, from tumor tissue obtained from patients and stored in biobanks.
“Modern technologies allow us to make enormously complex and rich measurements of, for instance, tumor biopsies,” de Ridder says. “How do we ensure that that highly complex collection of measurement data leads to new fundamental insights about cancer? And how can we use that collected data to better diagnose and treat cancer?”
“To answer these questions, it is essential to design algorithms that can analyze large collections of molecular data, and that is exactly what bioinformatics focuses on. Although our research is fundamental in nature, we are driven to make sure that our findings will have a positive effect on patients’ lives.”
More information: Ultra-fast deep-learned CNS tumour classification during surgery, Nature (2023). DOI: 10.1038/s41586-023-06615-2
more recommended stories
Shingles Vaccine May Cut Dementia Risk by 20%
A new study shows that the.
Scientists Unveil Next-Gen Eye-Tracking with Unmatched Precision
Eye-tracking technology has long been a.
New Study Questions Fluid Restriction in Heart Failure Management
A groundbreaking study presented at the.
Role of Leptin Signaling in the DMH for Metabolic Regulation
A groundbreaking study from the Pennington.
COVID-19 Vaccines May Lower the Risk of Long COVID by 27%
A recent rapid review suggests that.
3D-Printed Hydrogel for Meniscus Tear Treatment
Meniscus tears are one of the.
Machine Learning Predicts Early Mortality in IBD Patients
A groundbreaking study published in the.
Endometriosis Treatment Advances: Latest Research and Therapy
Recent endometriosis treatment advances are reshaping.
Lung Cancer Screening Gaps Persist Despite Updated Guidelines
A recent study led by researchers.
Altered Knee Movement After ACL Surgery May Trigger Early Osteoarthritis
A recent study published in the.
Leave a Comment