

A collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center, and the University of Virginia published their findings in JAMA Network Open. They investigated how well doctors used GPT-4, an artificial intelligence (AI) large language model system, for patient diagnosis.
GPT- 4 Study
The study included 50 U.S.-licensed family, internal, and emergency medicine physicians. The research team discovered that providing GPT-4 to physicians as a diagnostic assistance did not significantly improve clinical reasoning when compared to conventional resources. Other major discoveries are:
- GPT-4 alone produced much higher diagnostic performance scores, outperforming physicians utilizing traditional diagnostic web tools and clinicians supported by GPT-4.
- When comparing doctors who used GPT-4 to those who used standard diagnostic resources, there was no significant improvement in diagnostic performance.
“The field of AI is expanding rapidly and impacting our lives inside and outside of medicine. It is important that we study these tools and understand how we best use them to improve the care we provide as well as the experience of providing it,” said Andrew Olson, MD, a professor at the U of M Medical School and hospitalist with M Health Fairview.
This study suggests that there are opportunities for further improvement in physician-AI collaboration in clinical practice.”
Andrew Olson, MD, Professor, University of Minnesota Medical School
These findings highlight the complexities of integrating AI into clinical practice. While GPT-4 alone produced promising outcomes, combining GPT-4 with physicians did not significantly exceed the utilization of traditional diagnostic resources. This implies a nuanced potential for AI in healthcare, underlining the need for additional research on how AI might effectively help clinical practice. Further research is needed to determine how clinicians should be trained to use these tools.
For more information: Goh, E., et al. (2024) Large Language Model Influence on Diagnostic Reasoning. JAMA Network Open. doi.org/10.1001/jamanetworkopen.2024.40969.
more recommended stories
ADHD and Gut Health: The Role of Chili Peppers
The Gut Health-Brain Axis and ADHD:.
HEALEY Platform Accelerates ALS Therapy Research
A New Era of ALS Clinical.
Can Your Genetics Influence Your Income and Health?
A New Perspective on Health and.
Low-Oxygen Therapy in a HypoxyStat Pill? Scientists Say It’s Possible
A New Approach to Oxygen Regulation-HypoxyStat.
Tracking Immune Cells in Blood Predicts Cancer Survival
A new study from University College.
Dream Recall: The Role of Personality, Sleep, and Cognitive Traits
A recent study from the IMT.
Higher BMI Linked to Stronger Memory in Midlife Adults
Does Obesity Boost Brainpower? Study Links.
Antibiotic-Resistant Bacteria Found in Hospital Drains
Dangerous Bacteria Found in Hospital Sink.
Pancreatic Cancer Immune Map May Guide Future Therapies
New Immune Map Reveals Key Insights.
Brain-Like AI Explains Relational Learning
AI Unveils How the Brain Learns.
Leave a Comment