

Researchers from the UK and the Netherlands have linked hypertensive disorder in pregnancy (HDPs) to an increased risk of coronary artery disease and stroke using genomic analysis. The study, “Association of Hypertensive Disorders of Pregnancy with Future Cardiovascular Disease,” is published in JAMA Network Open.
The researchers refer to three diagnoses as “hypertensive diseases,” including prenatal hypertensive disorder, pre- or eclampsia, and either of these syndromes in combination with chronic hypertension.
Almost 260,000 genomes from individuals with confirmed cases of coronary artery disease, ischemic stroke, heart failure, or atrial fibrillation were the starting point for the researchers’ work. Then, they evaluated a few single nucleotide variants in a group of 136,325 controls and 31,455 patients who had either HDPs, gestational hypertension, preeclampsia, or eclampsia.
Single nucleotide variants, often known as SNVs or SNPs, are frequent, minute changes in the genome. An individual’s genome may contain a C nucleotide in one place but a G, T, or A in another, for instance. They are frequently found in human DNA’s non-coding regions and are not always linked to pathology.
To find genomic influences on the outcomes of individuals with HDPs, researchers utilized Mendelian randomization, a method that compares genetic variants associated with known disease risk factors to environmental exposures.
Heart failure or atrial fibrillation were not associated with any genomic variants associated with HDPs, gestational hypertension, or pre-or eclampsia/eclampsia. However, HDPs that were genetically predicted had a greater risk of coronary artery disease and stroke. Nevertheless, stroke, heart failure, or atrial fibrillation were not linked to coronary artery disease, only gestational hypertension, preeclampsia, and eclampsia.
The findings, according to the researchers, provide genetic evidence for an association between HDPs and a higher risk of coronary artery disease and stroke that is only partially mediated by systolic blood pressure and type 2 diabetes. This association supports the classification of HDPs as risk factors for cardiovascular disease. They suggest that future research concentrate on analyzing the mechanism causing the relationships.
Comparing bioinformatic genomic data is an effective method for identifying relationships between the occasionally peculiar genetic code that makes up people. Although many diseases have genetic variations, this does not automatically imply causation; however, it does provide researchers with better targets for more research.
more recommended stories
Growing Patient Involvement in Japan’s Allergy Research
The Growing Importance of Patient Involvement.
Forced Labor Risk Across U.S. Dietary Patterns
Hidden Ethical Risks in Dietary Patterns.
Selective Attention Is Exclusively Cortical in Humans
Selective Attention: New Insights from the.
New Study Connects Traumatic Brain Injury to Dementia
Understanding the Hidden Burden of Traumatic.
Air Pollution Raises Risks for Sleep Apnea Patients
Air Pollution Significantly Increases Sleep Apnea.
Plant-Based Pet Food Cuts Carbon Footprint – Study finds
The Growing Environmental Burden of Pet.
WHO Report on Hypertension Urges Urgent Action
The World Health Organization (WHO) has.
Biomarkers: The Future of Liver Transplant Care
Enhancing Patient Care Through Biomarkers More.
Widespread Ignorance About UTIs Revealed
A recent international study has uncovered.
Magnetic Nanorobots Enhance Tumor Drug Delivery
Cancer remains one of the leading.
Leave a Comment