

Researchers from the UK and the Netherlands have linked hypertensive disorder in pregnancy (HDPs) to an increased risk of coronary artery disease and stroke using genomic analysis. The study, “Association of Hypertensive Disorders of Pregnancy with Future Cardiovascular Disease,” is published in JAMA Network Open.
The researchers refer to three diagnoses as “hypertensive diseases,” including prenatal hypertensive disorder, pre- or eclampsia, and either of these syndromes in combination with chronic hypertension.
Almost 260,000 genomes from individuals with confirmed cases of coronary artery disease, ischemic stroke, heart failure, or atrial fibrillation were the starting point for the researchers’ work. Then, they evaluated a few single nucleotide variants in a group of 136,325 controls and 31,455 patients who had either HDPs, gestational hypertension, preeclampsia, or eclampsia.
Single nucleotide variants, often known as SNVs or SNPs, are frequent, minute changes in the genome. An individual’s genome may contain a C nucleotide in one place but a G, T, or A in another, for instance. They are frequently found in human DNA’s non-coding regions and are not always linked to pathology.
To find genomic influences on the outcomes of individuals with HDPs, researchers utilized Mendelian randomization, a method that compares genetic variants associated with known disease risk factors to environmental exposures.
Heart failure or atrial fibrillation were not associated with any genomic variants associated with HDPs, gestational hypertension, or pre-or eclampsia/eclampsia. However, HDPs that were genetically predicted had a greater risk of coronary artery disease and stroke. Nevertheless, stroke, heart failure, or atrial fibrillation were not linked to coronary artery disease, only gestational hypertension, preeclampsia, and eclampsia.
The findings, according to the researchers, provide genetic evidence for an association between HDPs and a higher risk of coronary artery disease and stroke that is only partially mediated by systolic blood pressure and type 2 diabetes. This association supports the classification of HDPs as risk factors for cardiovascular disease. They suggest that future research concentrate on analyzing the mechanism causing the relationships.
Comparing bioinformatic genomic data is an effective method for identifying relationships between the occasionally peculiar genetic code that makes up people. Although many diseases have genetic variations, this does not automatically imply causation; however, it does provide researchers with better targets for more research.
more recommended stories
Vegetarian Diets and Healthy Aging: Does Diet Quality Make a Difference?
Vegetarian diets are widely recognized for.
Mental Health Pros May Miss Bulimia Signs – Here’s Why
A recent study by the University.
New Study Questions Fluid Restriction in Heart Failure Management
A groundbreaking study presented at the.
Role of Leptin Signaling in the DMH for Metabolic Regulation
A groundbreaking study from the Pennington.
COVID-19 Vaccines May Lower the Risk of Long COVID by 27%
A recent rapid review suggests that.
3D-Printed Hydrogel for Meniscus Tear Treatment
Meniscus tears are one of the.
Machine Learning Predicts Early Mortality in IBD Patients
A groundbreaking study published in the.
Endometriosis Treatment Advances: Latest Research and Therapy
Recent endometriosis treatment advances are reshaping.
Lung Cancer Screening Gaps Persist Despite Updated Guidelines
A recent study led by researchers.
Altered Knee Movement After ACL Surgery May Trigger Early Osteoarthritis
A recent study published in the.
Leave a Comment