In drug research, artificial intelligence is becoming increasingly crucial. Researchers at the University of Zurich (UZH) have been able to better comprehend a deadly metabolic disorder; Lysosomal Storage Disease, because to advances in the use of Big Data, learning algorithms, and powerful computers.
Cystinosis is a rare lysosomal storage disease that affects 1 in 100,000 to 200,000 babies globally. The most prevalent and severe form of cystinosis, nephropathic (non-inflammatory), appears with kidney disease symptoms within the first months of birth, typically leading to kidney failure by the age of ten.
“Children with cystinosis suffer from a devastating, multisystemic disease, and there are currently no available curative treatments,” says Olivier Devuyst, head of the Mechanisms of Inherited Kidney Disorders (MIKADO) group and co-director of the ITINERARE University Research Priority Program at UZH.
The UZH researchers collaborated with Insilico Medicine, a startup that employs AI for drug development, to identify the underlying cellular mechanism behind cystinosis kidney disease. They identified disease-causing pathways and prioritized treatment targets within cystinosis cells utilizing model systems and Insilico’s PandaOmics platform.
Their findings revealed a causal association between the regulation of a protein called mTORC1 and the disease. Alessandro Luciani, one of the research group leaders, explains, “Our research showed that cystine storage stimulates the activation of the mTORC1 protein, leading to the impairment of kidney tubular cell differentiation and function.”
A promising therapy medication has been identified
Because cystinosis patients frequently require a kidney donation to regain kidney function, there is an urgent need for new effective treatments. Using the PandaOmics platform, the UZH research team set out to find current medications that could be repurposed for cystinosis. This entailed examining the drug’s structure, target enzymes, probable side effects, and efficacy in the affected tissues. Rapamycin, an already-approved medicine, has been found as a good possibility for treating cystinosis.
Rapamycin therapy restored lysosome functioning and regained cellular processes, according to studies in cell systems and model species.
Olivier Devuyst and Alessandro Luciani are optimistic about future developments: “Although the therapeutic benefits of this approach will require further clinical investigations, we believe that these results, obtained through unique interdisciplinary collaboration, bring us closer to a feasible therapy for cystinosis patients.”
more recommended stories
-
Efficient AI-Driven Custom Protein Design Method
Protein design seeks to develop personalized.
-
Human Cell Atlas: Mapping Biology for Precision Medicine
In a recent perspective article published.
-
Preterm Birth Linked to Higher Mortality Risk
A new study from Wake Forest.
-
Heart Failure Risk Related to Obesity reduced by Tirzepatide
Tirzepatide, a weight-loss and diabetes medicine,.
-
Antibiotic Activity Altered by Nanoplastics
Antibiotic adsorption on micro- and nano-plastics.
-
Cocoa Flavonols: Combat Stress & Boost Vascular Health
Cocoa Flavonols on combatting Stress: Stress.
-
AI Predicts Triple-Negative Breast Cancer Prognosis
Researchers at Sweden’s Karolinska Institutet explored.
-
Music Therapy: A Breakthrough in Dementia Care?
‘Severe’ or ‘advanced’ dementia is a.
-
FasL Inhibitor Asunercept Speeds COVID-19 Recovery
A new clinical trial demonstrates that.
-
Gut Health and Disease is related to microbial load
When it comes to Gut Health,.
Leave a Comment