

In drug research, artificial intelligence is becoming increasingly crucial. Researchers at the University of Zurich (UZH) have been able to better comprehend a deadly metabolic disorder; Lysosomal Storage Disease, because to advances in the use of Big Data, learning algorithms, and powerful computers.
Cystinosis is a rare lysosomal storage disease that affects 1 in 100,000 to 200,000 babies globally. The most prevalent and severe form of cystinosis, nephropathic (non-inflammatory), appears with kidney disease symptoms within the first months of birth, typically leading to kidney failure by the age of ten.
“Children with cystinosis suffer from a devastating, multisystemic disease, and there are currently no available curative treatments,” says Olivier Devuyst, head of the Mechanisms of Inherited Kidney Disorders (MIKADO) group and co-director of the ITINERARE University Research Priority Program at UZH.
The UZH researchers collaborated with Insilico Medicine, a startup that employs AI for drug development, to identify the underlying cellular mechanism behind cystinosis kidney disease. They identified disease-causing pathways and prioritized treatment targets within cystinosis cells utilizing model systems and Insilico’s PandaOmics platform.
Their findings revealed a causal association between the regulation of a protein called mTORC1 and the disease. Alessandro Luciani, one of the research group leaders, explains, “Our research showed that cystine storage stimulates the activation of the mTORC1 protein, leading to the impairment of kidney tubular cell differentiation and function.”
A promising therapy medication has been identified
Because cystinosis patients frequently require a kidney donation to regain kidney function, there is an urgent need for new effective treatments. Using the PandaOmics platform, the UZH research team set out to find current medications that could be repurposed for cystinosis. This entailed examining the drug’s structure, target enzymes, probable side effects, and efficacy in the affected tissues. Rapamycin, an already-approved medicine, has been found as a good possibility for treating cystinosis.
Rapamycin therapy restored lysosome functioning and regained cellular processes, according to studies in cell systems and model species.
Olivier Devuyst and Alessandro Luciani are optimistic about future developments: “Although the therapeutic benefits of this approach will require further clinical investigations, we believe that these results, obtained through unique interdisciplinary collaboration, bring us closer to a feasible therapy for cystinosis patients.”
more recommended stories
lncRNAs in Tumor Microenvironment Drive Cancer Progression
The tumor microenvironment (TME) is a.
Lyme Disease Symptoms: Why They Linger After Treatment
Lyme disease symptoms that persist after.
Body Image in Young Women: Cultural Influences Matter
A new international study led by.
Early Alzheimer’s Found Through Blood Biomarkers
A new study published in Molecular.
Label-Free Motion Analysis Detects Cancer Cells
Label-free motion analysis is emerging as.
Harmful Chemicals in Children’s Mattresses
A recent study has brought to.
TMS for Post-Stroke Aphasia Shows Remarkable Gains
A new clinical study led by.
CT Scan Overuse May Cause 1 in 20 New U.S. Cancers
A recent study published in JAMA.
Lactation Metabolism: Brain-Hormone Link Uncovered
Understanding how the body adjusts to.
Quantum Technology in Cancer Surgery: New Probe Aims to Improve Outcomes
A groundbreaking project from the University.
Leave a Comment