

Chromatin states and the epigenetic information associated with them are critical in sustaining cell identity when it divides. Histone post-translational modifications (PTMs) are critical determinants of cellular epigenetic status, transporting epigenetic information and controlling gene transcription. Epigenetic changes have been related to a variety of disorders, including breast cancer. However, it is unknown what function parental histone inheritance has in carcinogenesis or tumor evolution.
A team from the Chinese Academy of Sciences’ Shenzhen Institute of Advanced Technology (SIAT) developed a tumor model that introduces an MCM2-2A mutation, which is defective in parental histone binding, into breast cancer cell lines to investigate the impact of impaired parental histone inheritance on histone modification profiles in MCM2 mutant cells. On June 10, the work was published in Nature Communications.
The researchers found alterations in the distribution of numerous PTMs, including both repressed and active histone marks, in this model. Impaired histone inheritance led to significant epigenetic reprogramming, particularly affecting the repressive histone mark H3K27me3.
“The loss of H3K27me3 at the promoters of development-related genes resulted in their activation in cancer cells, thereby promoting tumor growth and metastasis,” said Prof. Gan Yunhai, corresponding author of the study.
Furthermore, after orthotopic transplantation, cancer cells with defective histone inheritance showed faster proliferation and a proclivity to become more aggressive. Additionally, it was identified in a study that hormonal contraceptives increase breast cancer risk.
Following that, single-cell RNA sequencing demonstrated that newly produced subclones in cancer cells with histone inheritance problems aided tumor development. When confronted with more complicated surroundings, these subclones gained advantages in proliferation and fitness, evolving faster.
This work confirms the importance of parental histone inheritance carrying H3K27me3 in the maintenance of specific areas of differentiated cells. Failure to repair H3K27me3 can reactivate mammary gland growth processes, which are frequently used by breast cancer cells as tumor progression drivers.
“These findings provide valuable insights into how epigenetic instability contributes to tumor progression, suggesting that targeting abnormal epigenetic inheritance may improve patient outcomes by preserving epigenetic stability,” said Prof. Gan.
more recommended stories
Breakfast Skipping Linked to Metabolic Syndrome
Breakfast Skippers May Face Metabolic Consequences.
Growing Patient Involvement in Japan’s Allergy Research
The Growing Importance of Patient Involvement.
Selective Attention Is Exclusively Cortical in Humans
Selective Attention: New Insights from the.
New Study Connects Traumatic Brain Injury to Dementia
Understanding the Hidden Burden of Traumatic.
Air Pollution Raises Risks for Sleep Apnea Patients
Air Pollution Significantly Increases Sleep Apnea.
Plant-Based Pet Food Cuts Carbon Footprint – Study finds
The Growing Environmental Burden of Pet.
Biomarkers: The Future of Liver Transplant Care
Enhancing Patient Care Through Biomarkers More.
Magnetic Nanorobots Enhance Tumor Drug Delivery
Cancer remains one of the leading.
Hospital Meals Strategy Promotes Nutrition and Sustainability
A recent UK study has revealed.
Naloxone Sales Show Initial Surge, Then Decline
Limited uptake raises concerns about accessibility.
Leave a Comment