Prostate and many other cancers have the problem of cancer cells being resistant to treatments as the illness worsens. These resistance mechanisms’ exact mechanics are still unknown, though. According to a recent study from the University of Eastern Finland, M1 macrophages, immune cells that promote inflammation, have the ability to change cancer cells into stem-like cells that are resistant to therapy. The findings were released in the journal OncoImmunology.
The impact of variables that promote inflammation in the tumor microenvironment on the advancement of prostate cancer was investigated in this study. The function of M1 and M2 macrophages in the tumor microenvironment was a specific area of interest for researchers. The presence of macrophages, which are immune cells, in the tumor microenvironment is frequently indicative of a bad prognosis for prostate cancer patients. According to the study, pro-inflammatory macrophages (M1) impair the androgen response and enhance the stem cell characteristics of cancer cells.
“We found that pro-inflammatory M1 macrophages secreted factors that increased the expression of stem cell markers such as NANOG, KLF4, SOX2 and CD44 in prostate cancer cells. Based on our research, it seems that inflammatory tumor microenvironment promotes the transformation of prostate cancer cells into a stem cell-like state where they are resistant to traditional therapies.”- Kirsi Kainulainen, Doctoral Researcher
The findings contribute to our understanding of the role that immune response plays in prostate cancer progression and treatment resistance. Research on immune cells’ impact on cancer cells’ ability to change could lead to novel therapeutic approaches for this cancer.
Research Director Kirsi Ketola and Senior University Lecturer Sanna Pasonen- Seppänen of the University of Eastern Finland’s Institute of Biomedicine conducted the study. The Academy of Finland, the Sigrid Juselius Foundation, the Finnish Cultural Foundation, the Northern Savo Cultural Foundation, the Paavo Koistinen Foundation, the Cancer Foundation Finland, the North Savo Cancer Association, and the Kuopio University Foundation have all provided funding for this work.
For more information: Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, SOX2, and CD44 through NFκB-signaling, Oncoimmunology, https://doi.org/10.1080/2162402X.2024.2393442
more recommended stories
Gut Immune Cells and Long-Lasting Antiviral Protection.Breakthrough Findings on How Gut Immune.
Mild Pancreatic Duct Dilatation Signals Higher Cancer RiskEarly Structural Changes Offer Critical Clues.
How the Uterus Senses Force During Labor: New InsightsA new study published in Science.
Fat-Free Mass and Brain Outcomes in Preterm BabiesEarly Fat-Free Mass May Hold the.
How Hormones Shape Dopamine-Driven LearningNYU Study on Hormones and Cognitive.
Protein Pair Guides Chromosome Alignment in MitosisKey Points A joint research team.
Intensive mind-body retreat rapidly alters brain functionAn intensive mind-body retreat combining meditation,.
Citrus and Grape Compounds Help Prevent Type 2 DiabetesA new clinical trial highlights the.
Personalized Pain Care Transforms Parkinson’s TreatmentNew UniSA research underscores the urgent.
Genetic Diversity Explains Obesity Risk DifferencesCross-ancestry Study Identifies Novel Obesity Genes.

Leave a Comment