Homocystinuria (HCU), a genetic disease that, if not treated promptly, can lead to catastrophic consequences, has been the subject of research that could significantly enhance the quality of life for infants with the condition. A study proving the effectiveness of this test was released in Clinical Chemistry today.
The amino acid methionine, which is a part of many proteins, including those contained in breast milk, cannot be properly metabolized by a newborn when exposed to HCU. If left untreated, this results in a pathological rise in methionine and homocysteine levels, which can have serious consequences. These side effects include everything from vascular abnormalities and intellectual difficulties to eye and bone problems.
The good news is that these consequences can be avoided by treating genetic disease like HCU as soon as it is discovered. As a result, the U.S. Department of Health and Human Services has listed HCU on its list of illnesses for which babies should be checked starting in 2006. Nevertheless, current assays only check methionine levels, which are frequently still low when newborn screening takes place. As a result, there is a high chance of HCU cases staying untreated because these tests are thought to miss about 50% of HCU cases.
To address this, researchers at the Centers for Disease Control and Prevention under the direction of Konstantinos Petritis, Ph.D., have created and validated a newborn screening test for HCU that measures homocysteine levels.
Petritis’ team used the test to screen leftover newborn screening samples from infants who had previously gotten diagnosis in order to gauge how well it performed. One hundred of these samples came from healthy individuals, fifty from preterm newborns receiving total parenteral nutrition (TPN) in the NICU, two from HCU-positive patients, and fifty from HCU-negative infants.
The test effectively differentiated between the HCU-positive and healthy samples. Also, it correctly identified the TPN samples as HCU-negative, which is notable given conventional methionine testing for HCU sometimes results in false positives in infants receiving TPN.
“Here we present the only flow injection analysis-tandem mass spectrometry first-tier newborn screening method that directly quantifies total homocysteine from dried blood spots,” said Petritis.
“The ability to screen total homocysteine during first-tier newborn screening is a significant step toward reducing HCU false-negative rates, which will enable early identification and intervention to reduce HCU-associated morbidity and mortality.”
more recommended stories
-
Music Therapy: A Breakthrough in Dementia Care?
‘Severe’ or ‘advanced’ dementia is a.
-
FasL Inhibitor Asunercept Speeds COVID-19 Recovery
A new clinical trial demonstrates that.
-
Gut Health and Disease is related to microbial load
When it comes to Gut Health,.
-
Camel vs Cow vs Goat Milk: Best for Diabetes
In a recent review published in.
-
Childhood Asthma Linked to Memory Issues
In a recent study published in.
-
Limited Prenatal COVID-19 Impact on Child Development
In a recent study published in.
-
MethylGPT Unlocks DNA Secrets – Age & Disease Prediction
Researchers recently created a transformer-based foundation.
-
Yellow Fever Vaccine: No Booster Needed, Study Finds
In a recent study published in.
-
Heat Exposure Risks for Maternal & Newborn Health
Extreme heat poses serious health risks.
-
New SCLC Biomarkers Fuel Precision Medicine Advances
On October 11, 2024, a new.
Leave a Comment