

According to a new study by experts at the University of Colorado Anschutz Medical Campus, a promising new stroke medicine that briefly suppresses a crucial protein in the brain without inflicting long-term harm could drastically impact the future treatment of cerebral and global ischemia.
The study appears in the May edition of the Journal of Biological Chemistry.
“We are one step closer to a new stroke therapy,” said K. Ulrich Bayer, Ph.D., professor of pharmacology at the University of Colorado School of Medicine and a senior author of the study. “Our research shows that the potential negative side effects were not manifested, while the neuroprotective effects were significant.”
Current stroke treatment is mostly focused on breaking up blood clots in order to restore blood flow to the afflicted region of the brain. However, the stroke medicine being examined here, which was developed on the CU Anschutz Medical Campus, protects brain function itself.
The researchers set out to figure out how to target Ca2+/calmodulin-dependent protein kinase II, or CaMKII, a key regulator of learning and memory. Long-term interference with this protein was expected to have a negative influence on memory and learning ability.
Using animal models, the researchers targeted the protein with a neuroprotective peptide known as tatCN19o.
“Our team found that tatCN19o did not affect pre-formed memories and only temporarily interfered with learning for less than an hour,” Bayer said.
They also discovered that the medication might prevent brain cell damage even at extremely low dosages and when administered 30 to 60 minutes after an ischemia episode.
Study co-author Carolyn Nicole Brown from the CU School of Medicine Department of Pharmacology said the temporary learning impairment with the drug in cases of global cerebral ischemia or stroke would be “highly acceptable even if they were longer lasting than observed here since the treatment is with a single acute bolus of the drug.”
Additionally, the very short duration of the learning impairment could enable even chronic treatments of some conditions,” she said, “including Alzheimer’s disease, as just one notable example.
Nicole Rumian, Ph.D., a co-author from the Department of Pharmacology, observed that the findings corroborate the notion that the protein is crucial in memory maintenance, but that temporarily suppressing it does not produce long-term amnesia.
Bayer anticipates that additional safety tests will be undertaken with this stroke medicine soon, and that human trials would begin in roughly three years.
“As a basic science researcher, I am super excited to see my work reach the clinic within my lifetime,” he said.
As the technology’s licensee, Neurexis Therapeutics is now developing the medicine through late preclinical research.
more recommended stories
New Study Questions Fluid Restriction in Heart Failure Management
A groundbreaking study presented at the.
Role of Leptin Signaling in the DMH for Metabolic Regulation
A groundbreaking study from the Pennington.
COVID-19 Vaccines May Lower the Risk of Long COVID by 27%
A recent rapid review suggests that.
3D-Printed Hydrogel for Meniscus Tear Treatment
Meniscus tears are one of the.
Machine Learning Predicts Early Mortality in IBD Patients
A groundbreaking study published in the.
Endometriosis Treatment Advances: Latest Research and Therapy
Recent endometriosis treatment advances are reshaping.
Lung Cancer Screening Gaps Persist Despite Updated Guidelines
A recent study led by researchers.
Altered Knee Movement After ACL Surgery May Trigger Early Osteoarthritis
A recent study published in the.
BRP Peptide for Weight Loss: A Natural Alternative to Ozempic?
The rising obesity epidemic has fueled.
Toxic Soil and Water Linked to Global Heart Disease Crisis
A groundbreaking review published in Atherosclerosis.
Leave a Comment