A novel artificial intelligence-based technology for detecting brain fluid flow around blood vessels could have significant implications for finding treatments for disorders like Alzheimer’s.
The perivascular gaps that surround cerebral blood arteries convey water-like fluids and aid in waste removal. Fluid flow changes have been associated to neurological disorders such as Alzheimer’s, small artery disease, strokes, and traumatic brain injuries, but they are difficult to assess in vivo.
University of Rochester Associate Professor Douglas Kelley led a diverse team of mechanical engineers, neuroscientists, and computer scientists in developing unique AI velocimetry techniques to properly determine brain fluid flow. The findings were published in the Proceedings of the National Academy of Sciences.
“In this study, we combined some measurements from inside the animal models with a novel AI technique that allowed us to effectively measure things that nobody’s ever been able to measure before,” says Kelley, a faculty member in Rochester’s Department of Mechanical Engineering.
The findings are the result of years of research undertaken by study co-author Maiken Nedergaard, codirector of Rochester’s Center for Translational Neuromedicine. Previously, the research was able to perform two-dimensional investigations on fluid flow in perivascular regions by infusing microscopic particles into the fluid and analyzing their position and velocity over time. However, more detailed measurements were required to fully comprehend the system’s complexities—and investigating such a crucial, fluid system is difficult.
To address this issue, the team teamed with Brown University’s George Karniadakis to use artificial intelligence. They used existing 2D data with physics-based neural networks to generate unprecedented high-resolution views of the system.
“This is a way to reveal pressures, forces, and the three-dimensional flow rate with much more accuracy than we can otherwise do,” says Kelley. “The pressure is important because nobody knows for sure quite what pumping mechanism drives all these flows around the brain yet. This is a new field.”
more recommended stories
-
Surgeons Slow to Adopt Biomaterials for Bone Defects
Two million bone transplants are performed.
-
Silver Showerheads May Promote Biofilms & Resistance
To protect against hazardous waterborne germs,.
-
Kaempferol: A Breakthrough in Allergy Management
Kaempferol, a dietary flavonoid found in.
-
Early Milk Cereal Drinks May Spur Infant Weight Gain
New research published in Acta Paediatrica.
-
Gaps in Gestational Diabetes Diagnosis in Pregnant Women
According to research on gestational diabetes.
-
TaVNS: A Breakthrough for Chronic Insomnia Treatment
A recent study conducted by the.
-
How LLMs Fake Personality for Better Results
Personality tests reveal that large language.
-
Just-in-Time Training Improves Success & Patient Safety
A study published in The BMJ.
-
Decreased Alzheimer’s Disease Risk Among Drivers
A new study led by researchers.
-
AI Advancing Mammography Density prediction
In a new article published in.
Leave a Comment