

According to an interdisciplinary team of partners across the United States that includes leaders at the University of Minnesota Medical School, the new technology could transform present blood storage and quality monitoring techniques, enabling improved patient matching and outcomes during blood transfusions. The project, which was directed by scientists from Massachusetts General Hospital, was just published in the PNAS journal.
”Blood transfusion could be transformed by the technology we recommend,” said Susan M. Wolf, JD, a professor of law and medicine at the U of M Medical School and Law School and one of the article’s co-authors.
The current techniques for storing and monitoring blood can be improved with lab-on-a-chip technology and machine learning. This is accomplished by enabling more accurate measurements to evaluate the standard of blood units kept in storage and better match patients with blood units that are available for blood transfusions. The authors claim that very unwell patients, those requiring ongoing transfusions, and those undergoing major procedures may require these cutting-edge technologies in particular.
The report not only outlined a roadmap for suggested modifications to the current system, it also underlined the necessity of ongoing cooperation among scientists, engineers, ethicists, specialists in artificial intelligence, patients, and industry partners to improve current practices.
An interdisciplinary team working on the Engineering Research Center (ERC) for Advanced Technologies for the Preservation of Biological Systems (ATP-BioSM), which is supported by the National Science Foundation, wrote this PNAS publication.
“ATP-BioSM is proud to be part of this work that outlines the future of diagnostics in a blood product. This points the way for microfluidic technologies to improve the use of preserved cell therapy products for better patient outcomes,” said John Bischof, PhD, director of the ERC and the Institute for Engineering in Medicine.
The $26 million NSF grant funding for ATP-BioSM (EEC-1941543) and multiple NIH awards helped to fund this PNAS research in part. Bischof, Wolf, who also chairs the university’s Consortium on Law and Values in Health, Environment, and the Life Sciences, and David McKenna, MD, director of the medical school’s Division of Transfusion Medicine, are researchers from the University of Minnesota Medical School who have contributed to this groundbreaking work. At Massachusetts General Hospital, Ziya Isiksacan, PhD, and Osman Berk Usta, PhD, are the senior and primary authors of this article.
more recommended stories
Forced Labor Risk Across U.S. Dietary Patterns
Hidden Ethical Risks in Dietary Patterns.
Selective Attention Is Exclusively Cortical in Humans
Selective Attention: New Insights from the.
New Study Connects Traumatic Brain Injury to Dementia
Understanding the Hidden Burden of Traumatic.
Air Pollution Raises Risks for Sleep Apnea Patients
Air Pollution Significantly Increases Sleep Apnea.
Plant-Based Pet Food Cuts Carbon Footprint – Study finds
The Growing Environmental Burden of Pet.
WHO Report on Hypertension Urges Urgent Action
The World Health Organization (WHO) has.
Biomarkers: The Future of Liver Transplant Care
Enhancing Patient Care Through Biomarkers More.
Widespread Ignorance About UTIs Revealed
A recent international study has uncovered.
Magnetic Nanorobots Enhance Tumor Drug Delivery
Cancer remains one of the leading.
Hospital Meals Strategy Promotes Nutrition and Sustainability
A recent UK study has revealed.
Leave a Comment