

Scientists have discovered the chemical receptor structure that is essential for brain development and function.
Because of their importance in brain function, Type A GABA receptors are already targeted by pharmaceutical anesthetics, sedatives, and antidepressants. The study, which was published today in the journal Nature, exposes the dominant assemblies and states of the GABA receptor, which could lead to the development of new drugs that target a variety of medical problems more specifically.
“It is the main player that balances excitation and inhibition in the brain,” said lead author Chang Sun, Ph.D., a postdoctoral researcher in the Vollum Institute at Oregon Health & Science University. “It affects all aspects of brain function, from motor function, to memory and learning, and also emotion and anxiety.”
“Because the off switch is so crucial, GABA receptors are spread throughout the entire brain,” added senior author Eric Gouaux, Ph.D., senior scientist in OHSU’s Vollum Institute and an investigator with the Howard Hughes Medical Institute.
The receptor is defined by five-sided, or pentameric, assemblies derived from 19 distinct subunits, each of which gives rise to a vast number of clinically relevant configurations. In this example, researchers painstakingly separated native assemblies from mice before infusing them with commonly used medicines for sleeplessness and postpartum depression.
They were then able to see the receptor’s three major structural populations.
“This study shows the dominant assemblies and states of the GABA receptor,” Gouaux said. “That’s really the huge breakthrough — nobody had been able to figure out which of the hundreds of thousands of these assemblies are most highly populated.”
According to co-author Sarah Clark, Ph.D., a former postdoctoral fellow in the Gouaux lab and currently an assistant professor at Oregon State University, the discovery demonstrates the GABA receptor in its native state rather than tissue culture, as previously demonstrated. Researchers used cutting-edge cryogenic electron microscopy to disclose the structure in its natural state, as opposed to previous techniques that required crystallizing enormous amounts of similar molecules to generate a false representation of their original structure.
“We used a combination of cryo-EM as well as single-molecule microscopy technique, which allowed us to count the subunits in each pentameric complex,” she said.
Gouaux commended OHSU, as well as the Jennifer and Bernard Lacroute Endowed Chair in Neuroscience, for sponsoring this high-risk, high-reward research, as well as the Howard Hughes Medical Institute for providing persistent support over a three-year period that resulted in the discovery.
“This kind of work is difficult to fund because no one thinks it will work,” Gouaux said.
more recommended stories
Statins and Depression: No Added Benefit
What Are Statins Used For? Statins.
Azithromycin Resistance Rises After Mass Treatment
Mass drug administration (MDA) of azithromycin.
Generative AI in Health Campaigns: A Game-Changer
Mass media campaigns have long been.
Molecular Stress in Aging Neurons Explained
As the population ages, scientists are.
Higher BMI and Hypothyroidism Risk Study
A major longitudinal study from Canada.
Therapeutic Plasma Exchange Reduces Biological Age
Therapeutic plasma exchange (TPE), especially when.
Childhood Cancer Diagnosis Delays Persist
Delays in childhood cancer diagnosis remain.
Hypothalamic Changes in Eating Disorders Explained
Groundbreaking MRI scans reveal microstructural hypothalamic.
Rapid Blood Test for Rare Diseases Revolutionizes Pediatric Diagnosis
A groundbreaking blood test developed by.
Blood Markers for Teen Depression: A Breakthrough in Early Detection
Mental health professionals and researchers have.
Leave a Comment