![Chronic Wound Healing Demonstration Using Glass](https://emed.news/wp-content/uploads/2023/06/plaster-arm-1-scaled.jpg)
![Chronic Wound Healing Demonstration Using Glass](https://emed.news/wp-content/uploads/2023/06/plaster-arm-1-scaled.jpg)
Silver retains antimicrobial activity longer when impregnated into “bioactive glass,” according to researchers at the University of Birmingham, and they have demonstrated for the first time how this promising combination provides more long-lasting antimicrobial wound protection than conventional alternatives.
Bioactive glasses are a distinct class of silicone-based synthetic biomaterials that have long been utilized in bone grafting.
Silver has long been known to inhibit or reduce the establishment of biofilms (communities of bacteria) in open wounds, and silver-based treatments are becoming more popular due to their effectiveness against many antibiotic-resistant strains of bacteria. These antimicrobial properties rely on silver remaining in an ionic form so that it can penetrate bacterial cell walls and disrupt their life cycle, but silver ions or nanoparticles in wound dressings are prone to transforming to silver sulfide or silver chloride, which can reduce antimicrobial activity and hinder treatment success.
The researchers evaluated the effects of bioactive glass doped with ionic silver on biofilms formed by Pseudomonas aeruginosa, a multi-drug resistant bacteria that easily forms biofilms and is a common cause of infection in chronic wounds.
The study, published in the journal Biofilm, demonstrated that specific preparation, storage, and application strategies can reduce the transition of silver ions to silver chloride and so retain antibacterial efficacy.
The Birmingham team already has extensive experience with bioactive glass, which is currently utilized as a bioactive degradable graft material. The width and density of the glass fibers to stimulate tissue growth are essential characteristics of bioactive glass in this application.
The researchers are eager to speak with companies who want to collaborate or co-develop solutions for dental surgery or wound care.
Dr. Sam Moxon, a postdoctoral researcher with the Birmingham team, has been researching the usage of these novel materials in dental surgery and wound care. He recently completed a program called ICURe (Innovation to Commercialization of University Research), and the team is now working to move the material toward clinical approval.
Dr. Moxon will present this research at the UK Society for Biomaterials annual meeting in Belfast on June 21st. He will also give a keynote address at the Future Investigators in Regenerative Medicine annual conference in Spain in September, where he will discuss his Birmingham research and the team’s plans to develop their promising novel biomaterials.
more recommended stories
Brain’s High-Tech Fix for Blurry Vision During Movement
High-Tech Video Optimization in Our Brain:.
Air Pollution Hurts Brain Health in Just 4 Hours
Air Pollution Blurs the Mind, Impairs.
New therapies developed by Oxford experts offer online support for anxiety and post-traumatic stress disorders
Urgent treatment solutions are needed for.
three key pillars to tackle antimicrobial resistance effectively — University of Oxford, Medical Sciences Division
The High-Level Meeting on antimicrobial resistance.
Oxford Vaccine Group marks 30 years battling ‘deadly six’ diseases with major art installation — University of Oxford, Medical Sciences Division
The installation was commissioned to mark.
Professor Ahmed Awarded Funding To Create World’s First Ovarian Cancer Prevention Vaccine — University of Oxford, Medical Sciences Division
Scientists at the University of Oxford,.
New research network unites Oxford University’s global fight against antimicrobial resistance — University of Oxford, Medical Sciences Division
Antimicrobial resistance (AMR) threatens the foundation.
Typhoid vaccine trial confirms sustained protection for older children — University of Oxford, Medical Sciences Division
The TyVOID study, published in the Lancet, measured the.
Study Publishes New Insights on Goblet Cell Differentiation in Colorectal Cancer — University of Oxford, Medical Sciences Division
The research addresses the long-recognized poor.
Four Oxford researchers win prestigious Philip Leverhulme Prizes — University of Oxford, Medical Sciences Division
Only 30 prizes are awarded throughout.
Leave a Comment