![Eye-Hand Coordination](https://emed.news/wp-content/uploads/2023/06/brown-hazel-eye-color-1.jpg)
![Eye-Hand Coordination](https://emed.news/wp-content/uploads/2023/06/brown-hazel-eye-color-1.jpg)
Have you ever made a spectacular catch, such as saving a phone from a toilet or catching an indoor cat from fleeing outside? Those abilities, such as the ability to grasp a moving object, necessitate precise interactions inside and between our visual and motor systems. Researchers at the University of Rochester’s Del Monte Institute for Neuroscience discovered that the capacity to visually foresee movement may be a crucial aspect of making successful eye-hand coordination resulting catch—or grabbing a moving object.
“We were able to develop a method that allowed us to analyze behaviors in a natural environment with high precision, which is important because, as we showed, behavioral patterns differ in a controlled setting,” said Kuan Hong Wang, Ph.D., a Dean’s Professor of Neuroscience at the University of Rochester Medical Center.
Wang led the study, which was published today in Current Biology in collaboration with Jude Mitchell, Ph.D., assistant professor of Brain and Cognitive Sciences at the University of Rochester, and Luke Shaw, a graduate student in the Neuroscience Graduate Program at the University of Rochester School of Medicine & Dentistry. “Understanding how natural behaviors work will provide us with a better understanding of what is wrong in a variety of neurological disorders.”
Researchers recorded where the primate is looking as well as the movement of the arm and hand as it reaches and catches moving crickets using numerous high-speed cameras and DeepLabCut—an AI technology that leverages video data to pinpoint important areas on the hand and arm to measure movements. The researchers discovered an 80-millisecond delay in the animal’s visuomotor behavior—the instant when vision and movement sync up to drive the hand toward the target.
Despite the measured delay, the primates caught the crickets, implying that they had to anticipate the cricket’s movement. The researchers were able to develop a thorough model of vision directed reaching behavior using data from both monkeys and crickets.
“These findings allow us to identify unique behavioral control strategies for mechanistic studies and engineering applications,” said Wang. “Visuomotor control problems exist in many neurological disorders due to brain lesions, stroke, and genetic factors. This research may help develop computational behavior analysis strategies to precisely characterize behavioral alterations in naturalistic settings and understand their underlying causes.”
more recommended stories
Air Pollution Hurts Brain Health in Just 4 Hours
Air Pollution Blurs the Mind, Impairs.
New therapies developed by Oxford experts offer online support for anxiety and post-traumatic stress disorders
Urgent treatment solutions are needed for.
three key pillars to tackle antimicrobial resistance effectively — University of Oxford, Medical Sciences Division
The High-Level Meeting on antimicrobial resistance.
Oxford Vaccine Group marks 30 years battling ‘deadly six’ diseases with major art installation — University of Oxford, Medical Sciences Division
The installation was commissioned to mark.
Professor Ahmed Awarded Funding To Create World’s First Ovarian Cancer Prevention Vaccine — University of Oxford, Medical Sciences Division
Scientists at the University of Oxford,.
New research network unites Oxford University’s global fight against antimicrobial resistance — University of Oxford, Medical Sciences Division
Antimicrobial resistance (AMR) threatens the foundation.
Typhoid vaccine trial confirms sustained protection for older children — University of Oxford, Medical Sciences Division
The TyVOID study, published in the Lancet, measured the.
Study Publishes New Insights on Goblet Cell Differentiation in Colorectal Cancer — University of Oxford, Medical Sciences Division
The research addresses the long-recognized poor.
Four Oxford researchers win prestigious Philip Leverhulme Prizes — University of Oxford, Medical Sciences Division
Only 30 prizes are awarded throughout.
Kavli Oxford’s Nick Gatford Wins Image of Distinction Award in Nikon Small World Competition — University of Oxford, Medical Sciences Division
The Nikon Small World competition, often.
Leave a Comment