Key Takeaways
- A new AI-driven tool, BIOPREVENT, predicts chronic GVHD and transplant-related mortality before symptoms appear
- Combines immune biomarkers, clinical data, and machine learning
- Designed to support early monitoring and research, not treatment decisions
- Freely available as a web-based clinical risk assessment tool
Why Chronic GVHD Continues to Challenge Long-Term Stem Cell Transplant Outcomes
Chronic graft-versus-host disease (GVHD) remains one of the most serious long-term complications following stem cell and bone marrow transplantation. While transplantation can be lifesaving, many patients develop chronic GVHD months after discharge, often without early clinical warning signs. This delay limits opportunities for preventive monitoring and timely intervention.
Researchers from MUSC Hollings Cancer Center, in collaboration with national transplant experts, have developed an artificial intelligence, based risk prediction tool that may help clinicians identify patients at high risk for chronic GVHD well before symptoms emerge.
How AI and Immune Biomarkers Are Improving Early Chronic GVHD Risk Prediction
Led by Sophie Paczesny, alongside investigators from the Center for International Blood and Marrow Transplant Research at the Medical College of Wisconsin, the team analyzed data from 1,310 transplant recipients enrolled in four multicenter studies.
The BIOPREVENT model integrates:
- Seven immune-related blood biomarkers linked to inflammation, immune activation, and tissue injury
- Nine validated clinical factors, including age, transplant type, disease indication, and prior complications
Blood samples were collected 90–100 days post-transplant, a critical period when immune dysregulation may already be underway. Using Bayesian additive regression trees, the model outperformed traditional statistical approaches, particularly in predicting transplant-related mortality.
Clinical Value for Risk Stratification
BIOPREVENT reliably categorized patients into low- and high-risk groups, with outcome differences extending up to 18 months post-transplant. Importantly, the study demonstrated that distinct biomarkers predict chronic GVHD versus transplant-related death, highlighting different biological pathways.
The tool is now available as a free, web-based application, allowing clinicians and researchers to generate individualized risk curves using patient-specific data.
Supporting Precision Transplant Medicine
While BIOPREVENT is not yet intended to guide treatment decisions, it offers a structured framework for risk assessment and clinical trial design. Ongoing studies will determine whether early interventions based on AI-generated risk signals can improve long-term transplant outcomes.
Explore All Haematology CME Conferences & Online Courses
For transplant teams, BIOPREVENT represents a meaningful step toward personalized follow-up strategies and data-informed patient care.
Source:
more recommended stories
Red Meat Consumption Linked to Higher Diabetes OddsKey Takeaways Higher intake of total,.
Pediatric Crohn’s Disease Microbial Signature IdentifiedKey Points at a Glance NYU.
Nanovaccine Design Boosts Immune Attack on HPV TumorsKey Highlights Reconfiguring peptide orientation significantly.
Rising Measles Cases Prompt Vaccination Push in NCKey Highlights 15 confirmed Measles cases.
High-Fat Diets Cause Damage to Metabolic HealthKey Points Takeaways High-fat and ketogenic.
Chronic Brain Compression Triggers Neuron Death PathwaysKey Takeaways Chronic brain compression directly.
Texas Medical Board Releases Abortion Training for PhysiciansKey Takeaways Texas Medical Board has.
Acute Ischemic Stroke: New Evidence for NeuroprotectionKey Highlights A Phase III clinical.
Needle-Thin Brain Implant for Layer-Specific Brain ResearchKey Takeaways Researchers have developed a.
Statins Rarely Cause Side Effects, Large Trials ShowKey Points at a Glance Large.

Leave a Comment